If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(20x)+(5x^2)=385
We move all terms to the left:
(20x)+(5x^2)-(385)=0
determiningTheFunctionDomain 5x^2+20x-385=0
a = 5; b = 20; c = -385;
Δ = b2-4ac
Δ = 202-4·5·(-385)
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8100}=90$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-90}{2*5}=\frac{-110}{10} =-11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+90}{2*5}=\frac{70}{10} =7 $
| 7w-15=27 | | -3/4x=1/2x+5/4 | | 5y=4+3y=6 | | -x-2+6x=48 | | 7p+p=8 | | 11b-7b=12 | | 24=2w+2(1/4 | | 5(3+p)=30 | | 2(n+2)=-14 | | 21/3-x=5 | | (2x)+(5x^2)=385 | | -5+n/9=-6 | | 6x+2=50-6 | | 5+2p=19 | | -7+h=-14 | | 2a-19.8=a+2.2 | | x2-9x=8 | | 40,000+1000x=60000 | | 5(-2+a)=-30 | | -4x+3=37 | | (x^2+3x+4)(3x^2-2x+1)=0 | | 9=-1+s | | 7x+13x-5-15=-10-10+14x+ | | 6a=78/6 | | 45x-36=24x-60 | | 14x-89=84 | | 5=x-21/3 | | ?x2/3=5/9 | | g+6=19 | | 3/w=4/3w+6 | | -4a-2=-34 | | 4+x=12-5 |